
Choice of Process Models

The no. of inter related activities to create a final product can be organized in different ways and

we can call these Process Models.

A software process model is a simplified representation of a software process. Each model

represents a process from a specific perspective. These generic models are abstractions of the

process that can be used to explain different approaches to the software development.

Any software process must include the following four activities:

1. Software specification (or requirements engineering): Define the main functionalities of the

software and the constrains around them.

2. Software design and implementation: The software is to be designed and programmed.

3. Software verification and validation: The software must conform to its specification and meets

the customer needs.

4. Software evolution (software maintenance): The software is being modified to meet customer

and market requirements changes.

The various Process Models are

 Water Fall Model

 Spiral Model Prototype

 Model Incremental

 Delivery

i) Water fall model

The waterfall model is a sequential approach, where each fundamental activity of a Process

represented as a separate phase, arranged in linear order.

In the waterfall model, you must plan and schedule all of the activities before starting working on

them (plan-driven process).

Plan-driven process is a process where all the activities are planned first, and the progress is

measured against the plan. While the agile process, planning is incremental and it’s easier to

change the process to reflect requirement changes.

The phases of the waterfall model are:

 Requirements

 Design

 Implementation

 Testing

 Maintenance

In principle, the result of each phase is one or more documents that should be approved and the

next phase shouldn’t be started until the previous phase has completely been finished. In practice,

however, these phases overlap and feed information to each other. For example, during design,

problems with requirements can be identified, and during coding, some of the design problems can

be found, etc.

The software process therefore is not a simple linear but involves feedback from one phase to

another. So, documents produced in each phase may then have to be modified to reflect the changes

made.

ii) Spiral Model

The spiral model is similar to the incremental model, with more emphasis placed on risk analysis.

The spiral model has four phases: Planning, Risk Analysis, Engineering and Evaluation.

A software project repeatedly passes through these phases in iterations (called Spirals in this

model).

The baseline spiral, starting in the planning phase, requirements is gathered and risk is assessed.

Each subsequent spiral build on the baseline spiral.

It is one of the software developments models like Waterfall, Agile, V-Model. Planning Phase:

 Requirements are gathered during the planning phase. Requirements like ‘BRS’that is

‘Bussiness Requirement Specifications’ and ‘SRS’ that is ‘System Requirement

specifications.

 Risk Analysis: In the risk analysis phase, a process is undertaken to identify risk and

alternate solutions. A prototype is produced at the end of the risk analysis phase. If any risk

is found during the risk analysis then alternate solutions are suggested and implemented.

 Engineering Phase: In this phase software is developed, along with testing at the end of the

phase. Hence in this phase the development and testing is done.

 Evaluation phase: This phase allows the customer to evaluate the output of the project to

date before the project continues to the next spiral.

iii) Software Prototyping

A prototype is a version of a system or part of the system that’s developed quickly to check the

customer’s requirements or feasibility of some design decisions. So, a prototype is useful when a

customer or developer is not sure of the requirements, or of algorithms, efficiency, business rules,

response time, etc.

In prototyping, the client is involved throughout the development process, which increases the

likelihood of client acceptance of the final implementation. While some prototypes are developed

with the expectation that they will be discarded, it is possible in some cases to evolve from

prototype to working system.

The phases of a prototype are:

1. Establish objectives: The objectives of the prototype should be made explicit from the start of

the process. Is it to validate system requirements, or demonstrate feasibility, etc.

2. Define prototype functionality: Decide what are the inputs and the expected output from a

prototype. To reduce the prototyping costs and accelerate the delivery schedule, you may ignore

some functionality, such as response time and memory utilization unless they are relevant to the

objective of the prototype.

3. Develop the prototype: The initial prototype is developed that includes only user interfaces.

4. Evaluate the prototype: Once the users are trained to use the prototype, they then discover

requirements errors. Using the feedback both the specifications and the prototype can be improved.

If changes are introduced, then a repeat of steps 3 and 4 may be needed

iv) Incremental Delivery

Incremental development is based on the idea of developing an initial implementation, exposing

this to user feedback, and evolving it through several versions until an acceptable system has been

developed. The activities of a process are not separated but interleaved with feedback involved

across those activities.

Each system increment reflects a piece of the functionality that is needed by the customer.

Generally, the early increments of the system should include the most important or most urgently

required functionality. This means that the customer can evaluate the system at early stage in the

development to see if it delivers what’s required. If not, then only the current increment has to be

changed and, possibly, new functionality defined for later increments.

